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ABSTRACT 

It is proved that the best possible factoring functions of Maurey's factorization 
theorem are unique up to multiplication by constant-modular functions. 

1. Introduction 

Let L S(f~, IX) denote a usual L ' -space  on an arbitrary measure space {ll, Ix}. 

The norm or quasi-norm of Ls(II, IX) is denoted by Ilftls. Our argument on 

Maurey's factorization theorem depends on the following facts (Lemma 1). Let 7 

denote a nonempty bounded closed convex subset of L s (11, IX), each element of 

which is nonnegative. Then, in the case 0 < s < 1, T has a unique function g 
is maximal in T. This extremal function g satisfies the whose quasi-norm 

inequality 

f j (f- g)g'l'a  .-<_o, T. 

In the case 1 < s < + 0% the above inequality is reversed, that is, in any T of 

L'( l ) ,  IX) as cited above there exists a unique function g which satisfies the 

inequality 

f > T. ( f  - g )g ' - '  dix = O, Vf~ 

From these facts we can directly derive Maurey's factorization theorem. Let u 

be a continuous linear map from a quasi-normed space E into LP(fl, IX). This 

theorem gives certain equivalent conditions for u to be factored as 

E ° , L q ( ~ , I X )  (h) )LP(~ , IX)  ( 0 < p < q ) ,  
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where (h) is the multiplication operator by a function h E L ' ( ~ , / z )  and 
1/r = 1/p - 1/q. The theorem also covers the case that a linear map u from a 
iinear subspace Sq of Lq(U~, ix) into E admits a factorization 

Sq (h)'Sp ° ' E .  

Incidentally our argument yields that the best possible factoring functions h are 

essentially unique: i.e., the h's  are uniquely determined up to multiplication by 

constant-modular functions, if they minimize the values 11 v I1" II h II, among all 

possible factorizations. 

Finally the author expresses his deep gratitude to the referee for his valuable 

advice. 

2. Proof of the statements 

We start by recalling Minkowski's inequality: with f, g E LS(I~,/z), 

I f l 'd~ + [glSdtz) <= ( I f [ + l g l ) d t z  ~ , 0 < s < l .  

The equality holds if and only if tfl/[ g I--const. a.e. ~. Of course the converse 
inequality is valid in the case 1 < s < + o0. 

The latter half of the following lemma is due to the referee. 

LEMMA 1. Let T be a nonempty bounded closed convex subset of L S(fl, Ix). 
Suppose all functions of T are nonnegative. Then, in the case 0 < s < 1, T has a 
unique function g whose quasi-norm is maximum in T. The extremal function g 

satisfies the inequality 

f V f ~  T. ( f  - g)gS-' dtz <= O, 

I f  1 < s < + o% T admits a unique function g whose norm is minimum in T and the 

function g satisfies 

f > T. ( f  _ g )gS-, dtz = O, V f E  

In this case the assumption that T is bounded is unnecessary. 

PROOF. We may assume that 1 = sup{llfI[~: f E T}. We first deal with the case 

l < s <  +oo. Since L ' ( f l , / z )  is reflexive in this case, T is weakly compact. 

Applying the lower semi-continuity of the norm in the weak topology, we have 

that T has a function g whose norm is minimum in T. The uniqueness of such g 
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is due to Minkowski's inequality. Now, assume that a function [ E T satisfies the 

inequality f ( f - g ) g ' - l d l z  <0.  It is easy to check, using the dominated con- 
vergence theorem, that 

d 
[ [el +(1-e)gl 'd l~  = s [  tel +(1-e )g l ' - ' ( f -g )d ta .  
d J 

so 

d 
d-~ f ter +(1-e)g] 'dl~ i,=o-- s f g~-l(f -g )d l z  <O. 

Hence for 0 < e small enough we get II ~f ÷ (1 - ~)g I1: < II g I1:, a contradiction to 
the minimality of II g II,. This establishes the latter half of the assertion. 

In the sequel we suppose that 0 < s < 1. Pick up an arbitrary sequence {g~} 

from T so that II g, II,--' 1 --- surqllfll,: f ~ T}. We will prove that such a sequence 
is always convergent in L', which will lead to the existence and uniqueness of the 
desired function. We first show that the sequence {(g~)'} in L I converges in 
norm. Assume that this is false. Then since f(gn)'dl.~---> 1, there exist two 
subsequences {ink} and {nk} of {n} and a positive number c such that n~ <mk 
and 

where 

I [(g.~)" - ( g ~ ) ' l d ~  ~ c  > 0 ,  
k 

k EN, 

For each Ek 
into l' 2 by the relation 

(I, ' (Io r , :  
\Ek 

By Minkowski's inequality, we have that for any pair f g E T 

Ek = fl[g.~< gin,] ={to E l i :  gnk(¢o) < gmk(aO}. 

we define a quasi-norm preserving map]'---> [f]k = ff1,/2) from T 

( L  \ m  / f \zI, 
q f, + pg, = ~ (qf)'dl.~) + [J~ (pg)'dp~) 

< ( ~  (qf *pg)'dlz)"" = = (qf + Pg)a 
k 

with the constants p, q nonnegative. Similarly the inequality 
(qf + pg)z holds. These yield that 

II q[g.,]k + p[g.~]k II, - I I  [qg.~ + pgm~lk I1, = II qg.~ + pg m, ll,. 

qf 2 + pg2 <= 
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Therefore each convex combination of [g,dk and [gmk]~ has the quasi-norm 

bounded by 1. The same is true for two vectors a = lim~ [g,~k]k, /3 = limk [g.k]k, if 

they exist. Surely we can suppose so, by considering subsequences of {nk} and 

{ink} if necessary. Then the assumption 

f [ ( g r~,3 s ~ " --(g.,) ]dg = > c  > 0  
k 

implies a ~ / 3 ,  while Ila [I, = 11/3 H, = 1 by f(g,)~dl.t-~l. This is evidently a 

contradiction, because the implicit function y = ( 1 - x ~ )  ~/~, 0<_-x_-__l, of 

x * + y~ = 1 is strictly convex. So {(g.)~} converges to some function G of L ~ in 

norm. Clearly G >-_0, f Gdl~ = 1. Here putting g = G ~/~, we claim that g, --~g in 

the s-th mean. Take any number e from the open interval (0,1) and call 

A~ = s u p ~  ( 1 - x f  < } l l _ x  ~ : 0 _ - _ x _ - l - e  . 

It is easy to see that on a set W. = 1~[(1 - e)g =< g. =< (1 - e)-'g] the inequality 

I g - g. I ' --< (ef t  - e) 'g ~ holds, and on l~\ W. we have I g - g. I ~ <-- A. I g ~ - g~,l- 
Therefore 

f lg-g. lSdtt = fw Ig-g.l~'dg + fn, w Ig-g,,l~dg 

<=(e/1-e)~ f g~dg + A. f ]g'-g~.Idlz. 

This yields lim, f ig -g ,  I ' d g - - ( e l ( 1 -  e))'. Since e is arbitrary, we conclude 

that g, --~ g in the s-th mean. In particular the desired function g exists in T and 

is also unique. 
Finally we show the inequality satisfied by this extremal function: 

S(f  - g)g'-~dl .L <= 0, Vf ~ T (conventions (3/0 = 0). We first note that this integral 

is definite in Lebesgue's sense, because the negative portion f n t f ~ l ( f -  g)gS-~ d/~ 

is finite. Assume that a function f E T satisfies the reverse inequality 

f ( f -  g)gS-ldp, > 0. We decompose the underlying measure space {fL/x} into a 

finite number of sets {El . . . . .  EN}. They are the totality of the following sets: 

ll[f <= g] t3 l)[ k /2 m <= f < ( k + 1)/2 m ] fq l~[j /2" <= g < (j + 1)/2"], 

t~[f > g l n •[ k /2" <= f < ( k + 1)/2" ] 0 a[j /2 '~ _-_ g < (j + 1)/2m 1, 

~[ f -_<g]N~[g=>rn]  and ~[ f>g]N~[f>-_m] ,  

where m is a positive integer and k, j run through all integers in the interval 
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[0, m2"). Using this decomposition, we define a quasi-norm preserving map: 

h --~/Y = (/~, . . . . .  /~N) from T into l~ such that 

= h s , 1 N n  =N.  
n 

Observe that for each n and nonnegative constants p, q, pf. + q~. <= (pf + qg)., 
so that 

Ilpf + qg, IIs =< pf  + qgll~ = Ilpf + qg Ils 

by Minkowski's inequality. Now, by the very definition of the integral, the 

summation E, (f~ . . . .  - g , ) g ,  taken over all n's with E, CO[f  _-g] converges 

to fo~t~_~l(f-g)g'-tdtx as m---~oo. Also by Fatou's lemma, the summation 

Zu( [~ -  ~,)g~-i taken over all remaining n's satisfies 

~ >  ~ - g)gS-~dlx (possibly ~ = +oo).  li___m,.. = 3atr>sl (f  

So from the assumption, we are led to the inequality E ~ ( f , -  g,)~,-~ > 0  for 

sufficiently large m. Fix such an m, and pick up a small number e > 0. Let us 

estimate the quasi-norm 

tte + ' ' '  

Let DR~(e) denote the right derivative of ~b(e). If either of the relations ~, > 0 

or g, = f, = 0 holds for each n, 1 =< n =< N, then 

N 

o~ l l~ f+(1 -e )g l lZ l~=o  s Y~ -2-1 - = g °  ( f o -  g ~ ) > 0 .  
n = l  

If on the other hand there are n's such that g, = 0  and f, >0 ,  we get 
Da II e f  + (1 - )g II= I,=o + o0. Therefore in both cases, for e small enough we 

have II ~ I1: < II ~f  + (1 - ~)~ IIZ, so that 

This contradicts the maximality of II g I1~. 

THEOREM 2 (B. Maurey [1]). Let {12, Ix} be a measure space and let E and G 

be two quasi-normed spaces. Furthermore let p, q, r be real numbers such that 
0 < p < q ~ + oo, 1/p = 1/q + 1/r. For a continuous linear map u from E into 

L ~ (12, tx, G), the following conditions are equivalent: 
v q 

(1) u is factored as E ~ L (f~, tx, G) ~--~ LP(12, Iz, G), where (h) denotes the 
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multiplication operator by the function h E L'(f~,/.Q and the linear mapv(e)= 
u(e)/h (e E E) is continuous. 

(2) There exists a constant C such that every finite sequence {e.} in E satisfies 
the inequality 

The best possible constant C~ of C in (2) equals the infimum of I[ v I[" II h II, taken 
over all factorizations in (1). Moreover, there exist factorizations u = (h)ov 
attaining this infimum, II o I1" II h II, = C~,  and in this case the functions II v I1" I hl of 
L ' (f~, Ix) are uniquely determined. 

PROOF. Applying HSlder's inequality, we can easily establish the implication 

(1) ~ (2) and the inequality C~ _-< II v I1" II h II, (c~. [11). 
Conversely assume that a nonzero linear map u satisfies (2). By scaling u, we 

may assume, without loss of generality, that C~ = 1. 

In case that q = +0% we repeat the original argument of [1]. Note that 

condition (2) in the case q = + ~ can be written as 

( I  [sup{llu(en)ll}]Pdtt) l'p<--sup{lle~ ll}' 

{e,} a finite sequence in E. This implies that the lattice theoretic supremum g of 

the family { l lu (e ) l l~LP:e~E,  Ilell----1} belongs to LP(f~,/x) and satisfies 

II g lip -<- 1 = c ~ .  Call  v (e) = u (e)/g. Then with L q = L~(f~,/~, G), !1 v (e)ltL ~ _-< 11 e II, 
or equivalently II v II = 1. Therefore u = (g)o v gives a desired factorization with 

the property It v I1" II g I1~ ~ 1, and so we have II v It" tl g lip = 1. Now,  take any 
factorization u = (h)o w such that II w I1" IIh I1~ = 1. By scaling, we may assume 

that II w II = 1. Then II u(e)/h IlL" =< 1 if II e II -< 1. So II g/h I1~ --< 1, i.e. g _-<lh I a.e./~, 

while II g I1~ = II h lip = 1. These imply that g = [h I a.e. ~. 
In the sequel, we shall assume that 0 < p < q < + ~. Put s = p/q, 0 < s < 1. 

We first observe that for each finite sequence {e~ } in E, the function E [I u (e,)[I q 

belongs to L ~ (f~, tt). Noting this fact, let us consider the set T' of functions in 

L ~ (f~,/~) which can be written as 

~ II u(e,)ll", {e,} a finite sequence in E such that ~.lle, ll~<=l. 

Clearly T' is convex. On the other hand, since the inequality in (2) reads as 

{I Jlu'e 'J'q)   len,lq 
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T' is bounded in L ' ( l l ,  p,). Consequently, by Lemma 1, the closure of T' in 

L'(f l ,  p,) has a unique function g whose quasi-norm is maximum in the set. 

Under the present situation, this extremal function satisfies the inequality: with 

f ~ T '  

I l g l l ~ = l  and f (f-g)g'-Idlz<-_O or f fg~-'d~<=llgll:=l. 
Put k = gl/tq+,). Then from the identity r/(q +r)=p/q  =s, it follows that 

Ilkll,=l. Define w(e) by w(e)=u(e) /k  ( e~ E) .  We claim that w is a 

continuous linear map from E into Lq (I1,/~, G) with the norm 11 w II <-- 1. Pick up 

an arbitrary vector e ~  0 of E. Since T' contains the function II u(e)ll/ll e II, we 

have 

1 >= f [l[u(e)l[lllell]qg~-'dt~ = f [[lu(e)lllileillqk-qd~, 

i.e., Ilell>-_llw(e)ll~,. This  guarantees the above property of w. Therefore 

u = ( k ) o w  gives a factorization of u satisfying I l w l l ' l l k l l , = l ,  so that 

II w I1" II k U, = 1, because II w I1" II k II, -> 1 as pointed earlier. 
Finally take any factorization u = (h)o v with II v I1" II h II, = 1. By scaling, we 

may normalize v, h as II v II = II h II, = 1. Since g is in the closure of T', there exists 
a sequence {gn} in T' which converges to g a.e./~ and in the s-th mean. From the 

inequality 

f (~,llu(e.)ll~/Ihl ") d ~  = Y~ Ilv(en)llb = Y~ lien II ", 

it follows that f g,/I h I~d/z =< 1. Hence by Fatou's lemma f g I h I-qdlx -< 1. This 

yields, together with Hflder 's inequality, that 

1 =  f g'dl~ = f (glhl-qylhl"d. = f (glhi-'y(lhl')l-'d. 

Since every term in the above is actually identical, we conclude that 

g[hl-q/[hl'=const, a.e. or k/Ih[=const, a.e./~. 

This implies that k = I h I a.e. p,, because II k II, = II h II, = 1. 

TrmOaEM 3 (B. Maurey [1]). Let {ll,/~} be a measure space and let E and g be 
two quasi-normed spaces. Furthermore let p, q, r be real numbers such that 
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0 < p < q < + oo, 1/p = l /q + lit. Suppose u is a continuous linear map [rom a 

linear subspace Sq of Lq(O, IX, G) into E. Then the following are equivalent: 
(1) u is factored as Sq th_~) Sp _5_> E with some h E L ' ( f l ,  IX) and v a continuous 

linear map. 
(2) There exists a constant C such that every finite sequence {/,} in S~ satisfies 

the inequality 

The best possible constant C~ of C in (2) equals the i#imum of II v I1" II h 11, taken 
over all factorizations in (1). Moreover, there exist factorizations u = (h)ov  

attaining this inlimum, II v tl " 11 h II, = C~, and in this case the functions 11 v II. l h I of 
L'(I~, ix) are uniquely determined. 

REMARK. The following proof was suggested by the referee. 

PROOF. The implication (1) => (2) and the inequality Cpq -<_ II v II-IIh II, are 
immediate from H/51der's inequality (cf. [1]). 

Conversely assume that a nonzero linear map u satisfies (2). By scaling u, we 

may assume that C~ = 1. Put s = q/p, 1 < s < + oo, and consider the subset T' of 

L~(f/, IX), each function of which is in the form 

II fo II p, {fn } a finite sequence in Sq such that ~ II u if.)ll p = 1. 

Clearly T' is convex and so its closure admits a unique function g with the 
minimum norm. Note that the inequality in (2) reads as 

Therefore IIg I1~ = 1, since c,~ = 1. Furthermore by Lemma 1, this function g 

satisfies 

f fg'- 'dp, >= II g ll: = 1, VF E T'. 

So, if we put k = g~;~'-P), the above inequality can be expressed in the form 

(1.1) f I l f l t .g~- 'a~ = f I lfllPkpd~ >ltu(f)tl p, v f  ~ s , .  

Put Sp = {kf: f E S,~}. It is easy to check, invoking H61der's inequality that Sp is a 

linear subspace of LP(fI, IX, G). Here we require that the correspondence 
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w : S, D kf--~ u (f) E E (f  ~ Sq) gives a continuous linear map from S o into E. 

Indeed, for any pair f~,f2 ~ Sq, replacing f with f l - f 2  in (1.1), we find that 

u(ft) = u(f2) whenever kfl = kf2, so that w is well-defined. Again by (1.1), we get 

II w II =< 1. Thus the desired factorization u = w o (k) has been obtained: clearly 

k ~ L r ( O , p . )  and I lk l l ,= l .  Also the pair satisfy Ilwll.lik[I,_---1, and so 

II w I1 li k II, = 1. 
Finally take any factorization u = v o (h) with the equality il v I1" II h lit = i. By 

scaling we may normalize h as II h lit = 1. Since g is in the closure of T', there 

exists a sequence {g,} in T' which converges to g in the s-th mean. From the 
inequality 

it follows that f gnlh  IPd/~ ~ 1. Therefore, using H61der's inequality, we get 

f g lh IPd/~ ~ 1, and so 

1<= gihlPd.<-_ g e. Iht'd  =1. 

Since every term in the above is identical, we conclude that gS/[ h [" = k ' / I  h [" = 

const, a.e. /~, so that k = I hl a.e./~, because IIk ]l, = H h H, = 1. 
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